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Host diversification may split epidemic spread into
two successive fronts advancing at different speeds
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Abstract Host diversification methods such as within-field mixtures (or field
mosaics, depending on the spatial scale considered) are promising methods
for agroecological plant disease control. We explore disease spread in host
mixtures (or field mosaics) composed of two host genotypes (susceptible and
resistant). The pathogen population is composed of two genotypes (wild-type
and resistance-breaking). We show that for intermediate fractions of resistant
hosts, the spatial spread of the disease may be split into two successive fronts.
The first front is led by the wild-type pathogen and the disease spreads faster,
but at a lower prevalence, than in a resistant pure stand (or landscape). The
second front is led by the resistance-breaking type, which spreads slower than
in a pure resistant stand (or landscape). The wild-type and the resistance-
breaking genotype coexist behind the invasion fronts, resulting in the same
prevalence as in a resistant pure stand. This study shows that host diversi-
fication methods may have a twofold effect on pathogen spread compared to
a resistant pure stand (or landscape): on one hand they accelerate disease
spread, and on the other hand they slow down the spread of the resistance-
breaking genotype. This work contributes to a better understanding of the
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multiple effects underlying the performance of host diversification methods in
agroecology.

1 Introduction

The negative impacts of pesticides on biodiversity and human health require
developing more ecological methods to control plant diseases [42,79,78]. So far,
the main alternative to using pesticides against plant pathogens has been to
breed genetically resistant plant varieties or cultivars and deploy them as pure
stands [77]. Under these conditions, populations of pathogens often evolve and
break down resistance genes after a few years, while a breeding program may
require at least a decade [8,81]. More sustainable control methods will require
diversifying genetic resistance over time (cultivar rotations) [4,49], and/or in
space. Spatial diversification of genetic resistance can be achieved either at the
field scale (host mixtures) [34,6,65,50,62,63,29,19,43,60,13] or at the scale of
the landscape (field mosaics) [66,18,16,41,52,59,58,74].

Host mixtures consist in growing several varieties of the same plant species
in the same field and at the same time [76,46]. Mixtures are or have been
used against plant pathogens in various regions of the world [21,82,27,56].
Although host mixtures have long been studied both theoretically [37,34] and
experimentally [35,76], their design remains to be optimized to be more widely
and efficiently used [43,5]. So far, most empirical studies of epidemic control
through host diversification have taken place at the field scale, but a few
exceptions [48,51] suggest that host diversification at the landscape scale (field
mosaics) would also be effective [53].

Host diversification is often achieved with resistant and susceptible plants
in which resistance is qualitative, meaning that infection either succeeds or
fails (as opposed to quantitative resistance, which only partially decreases
the success of infection). Qualitative resistance is often conferred by major
resistance genes and driven by gene-for-gene interactions [22,44]. Pathogen
genotypes can then be classified into two types: the resistance-breaking type,
which can successfully infect both resistant and susceptible hosts, and the
wild-type, which can successfully infect susceptible hosts only.

Infection sites may be individual plants, or smaller infection units such
as the size of a lesion, if the spatial domain considered is a single field [80].
At a larger spatial scale, albeit with a lower spatial resolution, infection sites
may be regarded as fields if the spatial domain considered is a landscape.
Previous authors [47] introduced the term “genotype unit area” to denote
the contiguous area occupied by a single host genotype [53]. From now on,
we will use the term “infection site” to mean the same thing as “genotype
unit area” at the landscape scale. Infection sites correspond to either resistant
or susceptible host genotypes. If the spatial domain is a field, resistant and
susceptible infection sites form a host mixture. If the spatial domain is a
landscape, resistant and susceptible infection sites form a mosaic of pure stands
in the landscape.
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Models can be spatially implicit [34,50,18,29,19,43,16,60,13] or spatially
explicit [6,65,62,63,66,41,59,58,52,74]. See [57] for a recent review. Among
spatially explicit models, the few that tackle the speed of pathogen spread
focus on host mixtures [6,65]. In these models, the pathogen population is
assumed to be wild-type, that is unable to infect resistant hosts. In this study,
we are interested in comparing the spreading speeds of resistance-breaking and
wild-type pathogens invading a spatial domain where resistant and susceptible
infection sites are mixed.

An outline of the paper is as follows. We first present the canola-clubroot
pathosystem as a motivating example. Then, we describe the epidemic model
in Section 3, along with its biological interpretation. We look into the analo-
gous spatially implicit (diffusionless) system in Section 4, and show how the
model parameters drive the genetic composition of the pathogen population at
equilibrium. We study the spatial spread of the disease in Section 5: we present
formal derivations of the spreading speeds, that are checked with numerical
simulations. Finally, in Section 6, we present a discussion of our results.

2 Motivating example: Clubroot in Alberta, Canada

Clubroot, caused by the obligate parasite Plasmodiophora brassicae Wor., is
a soilborne disease of canola/oilseed rape (Brassica napus L) and other cru-
ciferous hosts. Infection by P. brassicae is associated with the formation of
large galls on the roots of susceptible plants, leading to yield losses estimated
at 10%-15% globally [15]. In Alberta, Canada, clubroot was first identified on
canola in 2003 [71] and by 2019 had been detected in more than 3000 fields
[68]. Targeted surveys for the occurrence and spread of clubroot have been
conducted annually since 2005, generating a large data set. The total infested
area is estimated as the number of fields in which clubroot has been confirmed,
multiplied by the standard size (160 acres) of an agricultural field in Alberta.
Figure 1 shows the spread of clubroot as the square root of infested acres
over time (years). The linear relationship indicates an approximately constant
speed of disease spread.

The disease is controlled mainly by planting clubroot resistant canola va-
rieties, which initially became available in 2009 and 2010. Resistance-breaking
(RB) genotypes of P. brassicae were detected for the first time in Alberta in
2013 [69]. By 2019, RB genotypes had been confirmed in 239 clubroot-infested
fields vs. 2928 fields infested by the wild-type (WT) genotype. The resistance-
breaking designation of each P. brassicae isolate is confirmed in a greenhouse
test, although given the large number of new cases of clubroot identified every
year, only isolates recovered from resistant varieties are tested for their ability
to overcome resistance. As above, the spread of the WT and RB genotypes
of P. brassicae is expressed, respectively, as the square root of WT and RB
infested acres over time (years) (Fig. 2). The spread of the RB genotypes is
apparently slower than that of the WT. This suggests the RB genotypes might
have a lower capacity to propagate compared to the WT.
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Fig. 1 Spread of clubroot (Plasmodiophora brassicae) in Alberta, Canada, expressed as
the square root of P. brassicae-infested acres over time. The total number of infested acres
was calculated by multiplying the number of fields with confirmed clubroot infestations by
160 (standard acreage of an agricultural field in Alberta). The linear regression equation is
shown on the figure.

3 Model

We consider a spatial domain where susceptible and resistant infection sites
are homogeneously mixed for simplicity.

There are two pathogen genotypes: the wild-type (WT) and the resistance-
breaking (RB) genotype. The WT can only infect susceptible hosts, whereas
the RB genotype can infect both susceptible and resistant hosts. For the sake
of simplicity, we do not allow for coinfections in the model, meaning that each
site can be infected by at most one pathogen genotype. This assumption fits
resistant infection sites which cannot be infected by the WT. However, this is
a strong assumption with respect to susceptible fields at the landscape scale.
This is a weaker assumption for susceptible sites at the field scale, depending
on whether the infection is systemic (as in viruses) or localized in the plant (as
in rust fungi, which form very small lesions that may be defined as infection
sites as well).

The total density of infection sites N in the spatial domain is assumed to be
homogeneous and constant. A fraction p of the infection sites is resistant and
the other fraction 1− p is susceptible. The density of susceptible and resistant
sites infected by the RB genotype are Is and Ir, respectively. The density
of susceptible sites infected by the WT is Js. Plant pathogens are generally
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Fig. 2 Spread of wild-type (WT) and resistance-breaking (RB) genotypes of the clubroot
pathogen Plasmodiophora brassicae in Alberta, Canada, expressed as the square root of
WT (black) and RB (red) infested acres over time. The total number of infested acres was
calculated by multiplying the number of fields with confirmed infestations of each genotype
by 160 (standard acreage of an agricultural field in Alberta). The linear regression equations
are shown in black and red, respectively, for the WT and RB data.

dispersed as free-living propagules such as fungal spores, or by insect vectors
in the case of viruses. For simplicity we do not model possible insect vectors
explicitly. The density of infectious propagules produced by the WT and the
RB genotype are W and V , respectively. Each site infected by the WT emits
infectious propagules at rate ζ.

We assume the RB genotype incurs a cost c which reduces the propagule
emission rate ζ by a factor 0 ≤ 1− c ≤ 1 relative to the WT. Similarly, a cost
k reduces the infection efficiency of the propagules. The idea of a cost as a
counterpart to the ability of breaking a resistance gene originated as a theoret-
ical hypothesis to explain the often observed maintenance of polymorphism in
pathogen populations, in both agricultural and wild ecosystems [73,64,24,70,
8]. Since then, such a cost has been demonstrated and measured in a number
of parasites, including bacteria [14,75], fungi [11,72,2,28,10,9,7], viruses [36,
33,23,55,31,38], nematodes [12], and oomycetes [45].

The diffusion coefficient of infectious propagules is D. Each infectious
propagule dies or deposits at rate δ. Their infection rate is θ. Infected sites
recover or are replaced with uninfected sites at rate α. We assume no disease-
induced mortality for simplicity, as is the case for most plant viruses and many
other parasites. Time is denoted as t and space is denoted as x ∈ (−∞,+∞)
(i.e. we adopt a uni-dimensional conception of space for simplicity).
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The model is:

∂W

∂t
= ζJs − δW +D

∂2W

∂x2
,

∂V

∂t
= (1− c)ζ(Is + Ir)− δV +D

∂2V

∂x2
,

∂Js
∂t

= θW ((1− p)N − Js − Is)− αJs ,

∂Is
∂t

= (1− k)θV ((1− p)N − Js − Is)− αIs ,

∂Ir
∂t

= (1− k)θV (pN − Ir)− αIr .

3.1 Non-dimensionalization

Let

w =
δW

ζN
, v =

δV

ζN
, a =

Js
N
, y =

Is
N
, z =

Ir
N
,

and

t∗ = tδ , x∗ = x

√
δ

D
,

and

R =
θζN

αδ
, µ =

α

δ
.

Dropping the asterisks, and using subscripts to denote partial differentiation
with respect to t or x, the model can be expressed as:

wt = a− w + wxx ,

vt = (1− c)(y + z)− v + vxx ,

at = µ[Rw(1− p− a− y)− a] , (1)

yt = µ[(1− k)Rv(1− p− a− y)− y] ,

zt = µ[(1− k)Rv(p− z)− z] .

4 Analysis of the diffusionless system

To evaluate the underlying dynamical behavior, we first explore the diffusion-
less system, in which the dot represents differentiation over time:

ẇ = a− w ,
v̇ = (1− c)(y + z)− v ,
ȧ = µ[Rw(1− p− a− y)− a] , (2)

ẏ = µ[(1− k)Rv(1− p− a− y)− y] ,

ż = µ[(1− k)Rv(p− z)− z] .
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Fig. 3 Influence graph corresponding to System (1).

This system of ODE’s is similar to that of [13], except that we consider
explicit propagule compartments, which allows us to distinguish two types of
resistance-breaking costs (c and k).

We define P = a+ y + z as the prevalence of the disease.

4.1 The system is Cooperative

System (2) has “Defined Feedback Relations” [67] meaning that the rates of
change of all variables depends either positively or negatively of other variables
(no sign change). More specifically, the rate of change of each variable in
(w, v, a, y, z) depends non-negatively on other variables with two exceptions:
the rate of change of a depends negatively on y, and the rate of change of y
depends negatively on a (sign symmetry). Figure 3 shows the influence graph
corresponding to System (2). One can check that every loop in the signed
and undirected influence graph has an even number of negative edges. Hence,
system (2) is cooperative [67]. Therefore, the solution of the system necessarily
converges to an equilibrium (there is no attracting periodic orbit for instance).

4.2 Equilibria

System (2) has four equilibria:

– the “disease-free” equilibrium (w, v, a, y, z) = (0, 0, 0, 0, 0).
– the “WT-only” equilibrium

(w̄, 0, ā, 0, 0) :=

(
R(1− p)− 1

R
, 0,

R(1− p)− 1

R
, 0, 0

)
,

which is positive and therefore biologically exists if and only if

R(1− p) > 1 . (3)

The prevalence of the disease is PW = (1− p)− 1/R.
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– the “RB-only” equilibrium (0, v̄, 0, ȳ, z̄), in which

v̄ :=
R(1− c)(1− k)− 1

R(1− k)
,

ȳ := (1− p)R(1− c)(1− k)− 1

R(1− c)(1− k)
,

z̄ := p
R(1− c)(1− k)− 1

R(1− c)(1− k)
.

The RB-only equilibrium is positive and therefore biologically exists if and
only if

R(1− c)(1− k) > 1 . (4)

The prevalence of the disease is PR = 1− 1/(R(1− c)(1− k)).
– the “coexistence” equilibrium (ŵ, v̂, â, ŷ, ẑ), in which

ŵ :=
c− p+k(1− c)
c+k(1− c)

,

v̂ :=
Rp(1− c)− c−k(1− c)(Rp+ 1)

Rc+kR((1− c)(1− k) + c)
,

â :=
c− p+k(1− c)
c+k(1− c)

,

ŷ :=
Rp(1− c)− c−k(1− c)(Rp+ 1)

Rc+kR(1− c)
,

ẑ :=
Rp(1− c)− c−k(1− c)(Rp+ 1)

R(1− c)(1− k)
.

The coexistence equilibrium is positive and therefore biologically exists if
and only if

c+k(1− c) > p and p >
c+k(1− c)

R(1− c)(1− k)
, (5)

which implies that conditions (3) and (4) are satisfied.
The prevalence of the disease is again PR = 1− 1/(R(1− c)(1− k)).

Figure 4A summarizes the picture in the plane (p, c) for R = 5 and k = 0.
Figure 4B shows the prevalence of the disease (P ) as a function of the fraction
of resistant sites (p) for R = 5, c = 0.5, and k = 0. The shape of the graphs
are qualitatively unchanged for other parameter values. As previously shown
by [13], the prevalence decreases with respect to p (the proportion of resistant
sites) until a threshold p value is attained, above which the prevalence remains
constant.

To make clear under which conditions coexistence occurs, we next perform
a mutual invasion analysis [61].
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Fig. 4 Parameter values: R = 5, c = 0.5, and k = 0.

4.3 Can the WT invade the RB genotype?

First we wonder whether the WT can initially invade the RB-only equilibrium
(assuming R(1− c)(1− k) > 1). The sub-model associated with this question
is

ẇ = a− w ,
ȧ = µ[Rw(1− p− a− ȳ)− a] ,
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with

ȳ = (1− p)R(1− c)(1− k)− 1

R(1− c)(1− k)
.

This yields

ẇ = a− w ,

ȧ = µ

[
Rw

(
1− p

R(1− c)(1− k)
− a
)
− a
]
.

The corresponding Jacobian matrix is

J(w,a) =

(
−1 1

µR
(

1−p
R(1−c)(1−k) − a

)
−µ(Rw + 1)

)
,

which we evaluate at (w, a) = (0, 0):

J(0,0) =

(
−1 1

µ 1−p
(1−c)(1−k) −µ

)
.

The trace of J(0,0) is negative and its determinant is

µ(p− c−k(1− c))
(1− c)(1− k)

.

Therefore, the wild-type can invade if and only if

c+k(1− c) > p . (6)

4.4 Can the RB genotype invade the WT?

Now we wonder whether the RB genotype can initially invade the WT-only
equilibrium (assuming R(1 − p) > 1). The sub-model associated with this
question is

v̇ = (1− c)(y + z)− v ,
ẏ = µ[(1− k)Rv(1− p− ā− y)− y] ,

ż = µ[(1− k)Rv(p− z)− z] ,

with

ā =
R(1− p)− 1

R
.

Letting u = y + z, the above system can be equivalently expressed as

v̇ = (1− c)u− v ,

u̇ = µ

[
(1− k)Rv

(
1− R(1− p)− 1

R
− u
)
− u
]
.
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The corresponding Jacobian matrix is

J(v,u) =

(
−1 1− c

µ(1− k)R
(

1− R(1−p)−1
R − u

)
−µ((1− k)Rv + 1)

)
,

which we evaluate at (v, u) = (0, 0):

J(0,0) =

(
−1 1− c

µ(1− k)(Rp+ 1) −µ

)
,

The trace of J(0,0) is negative and its determinant is

µ(1− (1− k)(Rp+ 1)(1− c)) .

Therefore, the WT can invade if and only if

p >
c+k(1− c)

R(1− c)(1− k)
. (7)

4.5 Conclusions from the diffusionless system

The WT and RB pathogen can invade the disease-free equilibrium if and only
if conditions (3) and (4) hold, respectively, which we assume (otherwise, we
would not be concerned with these pathogen genotypes).

The WT can initially invade the RB-only equilibrium if condition (6) holds.
The RB genotype can initially invade the WT-only equilibrium if condition
(7) holds. Therefore, if both conditions (6) and (7) hold, the RB and WT can
invade each other, and they are led to coexist. Conditions (6) and (7) are the
same as conditions (5) implying the existence of the coexistence equilibrium.
Since system (2) is cooperative and other equilibria are unstable, the coexis-
tence equilibrium is globally asymptotically stable when it exists. We refer the
reader to [13, Section S4] for more details on how the theory of cooperative
systems can be used to show the global stability of the coexistence equilibrium
in a related model.

5 Spreading of interacting pathogen genotypes with multiple fronts

We now get back to the spatial model (with diffusion). Although we are not
able to rigorously prove the existence of travelling wave fronts, our numerical
evidence strongly suggests that such fronts exist (Figure 5). Therefore we
consider the possibility of travelling fronts for our system. Figure 5 shows
the six possible patterns of travelling waves. We posit that, as can be found
in some similar cooperative degenerate systems [40,20] (see also [26,17]), the
front speeds are linearly determined as given as minimum possible wave speed
based on the linearization at the leading edge of the wave. In this section,
we apply the minimum wave speed approach [39,25,3,32] to linearized sub-
models for finding the pathogen spreading speeds as a critical point in each
sub-model, and then test the theoretical results against numerical simulations.
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Fig. 5 Six possible patterns of travelling waves. Panel (A) shows a travelling wave solu-
tion connecting the disease-free equilibrium (DFE) to the WT-only equilibrium. Panel (B)
shows the connection betwenn the DFE and the RB-only equilibrium. Panel (C) shows the
connection between the RB-only and the WT-only equilibrium. Panel (D) shows the sym-
metric situation in which the RB genotype invades the WT. Panel (E) shows the connection
between the RB-only and the Coexistence equilibrium. Panel (F) shows the connection be-
tween the WT-only and the Coexistence equilibrium. The invasion fronts spread to the right
at speeds σ1 (A), σ2 (B), σ3 (C, E), and σ4 (D, F). Parameter values: p = 0.2, c = 0.9 (A),
p = 0.9, c = 0.2 (B), p = 0.25, c = 0.7 (C), p = 0.5, c = 0.25 (D), p = 0.3, c = 0.5 (E),
p = 0.2, c = 0.25 (F), and R = 5, µ = 0.1, k = 0 (A–F).

5.1 Invading the disease-free equilibrium

In this section, we derive the spreading speeds of the WT and RB genotype
when invading the disease-free equilibrium (Fig. 5A-B).

At leading edge invading the disease-free equilibrium, w, v, a, y, z have small
positive values. Note that w and v equations in system (1) are linear. We
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linearize the other equations at leading edge:

wt = a− w + wxx ,

vt = (1− c)(y + z)− v + vxx ,

at ≈ µ[Rw(1− p)− a] ,

yt ≈ µ[(1− k)Rv(1− p)− y] ,

zt ≈ µ[(1− k)Rvp− z] .

Using u = y + z, the above system can be equivalently expressed as

wt = a− w + wxx ,

at = µ[Rw(1− p)− a] ,

vt = (1− c)u− v + vxx ,

ut = µ[(1− k)Rv − u] ,

where (w, a) and (v, u) now form two uncoupled subsystems.
We are interested in traveling wave solutions such that

` =


w
a
v
u

 = k exp(−s(x− σt)) ,

in which k is an implicit column vector, σ is the wave speed, and s is the
exponential decay rate of the wave profile at leading edge.

Plugging the previous expression in the system, we get

sσ` =


−1 + s2 1 0 0
µR(1− p) −µ 0 0

0 0 −1 + s2 (1− c)
0 0 µ(1− k)R −µ


︸ ︷︷ ︸

A

` ,

which implies

det


−1 + s2 − sσ 1 0 0
µR(1− p) −µ− sσ 0 0

0 0 −1 + s2 − sσ (1− c)
0 0 µ(1− k)R −µ− sσ


︸ ︷︷ ︸

B=A−sσ1

= 0 ,

in which 1 is the identity matrix. The above equality is equivalent to

det

[
−1 + s2 − sσ 1
µR(1− p) −µ− sσ

]
× det

[
−1 + s2 − sσ (1− c)
µ(1− k)R −µ− sσ

]
= 0 ,
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which is equivalent to

0 = [(−1 + s2 − sσ)(−µ− sσ)− µR(1− p)]
× [(−1 + s2 − sσ)(−µ− sσ)− µR(1− c)(1− k)] .

We now introduce Q to denote either R(1 − p) or R(1 − c)(1− k), which are
the basic reproductive numbers of the WT and RB genotypes, respectively;
see equations (3-4). From now on, we therefore assume Q > 1 so that the
pathogens can invade the disease-free equilibrium. This allows us to consider
a single equality:

(−1 + s2 − sσ)(−µ− sσ)− µQ = 0 . (8)

Next we follow the approach for using this equation to calculate the minimum
wave speed as outlined in [25]. Solving equation (8) for σ > 0 yields

σ(s, µ,Q) :=
s2 − µ− 1 +

√
(s2 + µ− 1)2 + 4µQ

2s
.

Equation (8) can therefore be written to include the dependency of σ on s, µ
and Q as

P(σ(s, µ,Q), s) := (−1 + s2 − sσ(s, µ,Q))(−µ− sσ(s, µ,Q))− µQ = 0 .

Differentiating with respect to s, we have, for all s,

dP
ds

=
∂P
∂σ

∂σ

∂s
+
∂P
∂s

= 0 . (9)

We are interested in the minimum possible wave speed. Let

s?(µ,Q) = arg min
s
σ(s, µ,Q) ,

and
σ?(µ,Q) = σ(s?(µ,Q), µ,Q) .

Since σ? is such that ∂σ/∂s = 0, equation (9) yields

∂P
∂s

(σ?(µ,Q), s?(µ,Q)) = 0 . (10)

Since P is cubic in s, ∂P/∂s is quadratic in s. We are interested in the condi-
tions on the coefficients that allow both polynomials to have a common root,
s?. They are given by cancelling the resultant of the two polynomials (which is
also the determinant of the Sylvester matrix of the two polynomials). Letting
P = es3 + fs2 + gs+ h yields ∂P/∂s = 3es2 + 2fs+ g, and the resultant is

r(e, f, g, h) = −e(f2g2 − 4eg3 − 4f3h+ 18efgh− 27e2h2) ,

as described in equation (4.30) of reference [32]. The coefficients are identified
as e = −σ, f = σ2 − µ, g = σ(1 + µ), and h = −µ(Q − 1). The equality
r(e, f, g, h) = 0 can be equivalently expressed as a cubic with respect to σ2:

E(σ2)3 + F (σ2)2 +G(σ2) +H = 0 ,
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in which E = 4µ(Q− 1) + (1 + µ)2, F = 4 + 2µ3 + (6Q+ 2)µ2 + (18Q− 8)µ,
G = µ4 − (6Q − 8)µ3 − (27Q2 − 36Q + 8)µ2, and H = −4µ4(Q − 1). Since
we assume Q > 1, we have that E is positive and H is negative, which means
that we are in the same configuration as [25]. This implies that σ?(µ,Q) is
uniquely defined as the square root of the largest root of the above cubic.

Although it is possible to write down the formula for the largest root of
a cubic polynomial, we have no simple expression of σ?(µ,Q). However, this
function only depends on two parameters, µ and Q. Therefore, one can plot
σ? as a function of µ and Q without loss of generality. One can easily check
that for all Q > 1 and µ > 0,

∂σ?

∂Q
(µ,Q) > 0 , (11)

meaning that σ? increases as Q increases.
As a consequence, c+k(1− c) > p , or equivalently (1−p) > (1− c)(1−k),

implies

σ1 := σ?(µ,R(1− p)) > σ?(µ,R(1− c)(1− k)) =: σ2 ,

meaning that the WT spreads faster than the RB genotype. For c+k(1− c) <
p, the inequality is reversed, and the RB genotype spreads faster than the WT.

5.2 Invading the RB-only equilibrium

In this section, we derive the spreading speed of the WT when invading the
RB-only equilibrium (Fig. 5C-E).

At leading edge invading the RB-only equilibrium, w, a have small positive
values while v, y, z are constant (equal to equilibrium values v̄, ȳ, z̄, resp.). We
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linearize the a equation at leading edge:

wt = a− w + wxx ,

at ≈ µ[Rw(1− p− ȳ)− a] ,

with

ȳ = (1− p)R(1− c)(1− k)− 1

R(1− c)(1− k)
.

This yields

wt = a− w + wxx ,

at ≈ µ

[
1− p

(1− c)(1− k)
w − a

]
.

Proceeding as in Section 5.1, the spreading speed of the WT is

σ3 := σ?
(
µ,

1− p
(1− c)(1− k)

)
.

As shown in Section 5.1, σ3 > 0 is conditioned to the second argument of
the function σ? being greater than one, i.e. (1− p)/[(1− c)(1− k)] > 1. This
condition is equivalent to (6), which is the condition for the WT to invade the
RB genotype. Lastly, one can check that σ3 < σ1 is equivalent to condition
(4), which is necessarily satisfied since we assumed the RB-only equilibrium
exists.

5.3 Invading the WT-only equilibrium

In this section, we derive the spreading speed of the RB genotype when invad-
ing the WT-only equilibrium (Fig. 5D-F).

At leading edge invading the WT-only equilibrium, v, y, z have small posi-
tive values while w, a are constant (equal to equilibrium values w̄, ā, resp.) in
space. We linearize the (y, z) equations at leading edge:

vt = (1− c)(y + z)− v + vxx ,

yt ≈ µ[(1− k)Rv(1− p− ā)− y] ,

zt ≈ µ[(1− k)Rvp− z] ,

with

ā =
R(1− p)− 1

R
.

Using u = y + z, the above system can be equivalently expressed as

vt = (1− c)u− v + vxx ,

ut = µ[(1− k)(1 +Rp)v − u] .
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Proceeding as in Section 5.1, the spreading speed of the RB genotype is

σ4 := σ?(µ, (1 +Rp)(1− c)(1− k)) .

As indicated in Section 5.1, σ4 > 0 is conditioned to the second argument of
the σ? function being greater than one, i.e. (1 + Rp)(1 − c)(1− k) > 1. This
condition is equivalent to (7), which is the condition for the RB genotype to
invade the WT. One can lastly check that σ4 < σ2 is equivalent to condition
(3), which is necessarily satisfied since we assumed the WT-only equilibrium
exists.

5.4 Comparing spreading speeds under coexistence conditions

If c+k(1− c) < p, then the RB genotype invades the disease-free equilibrium
faster than the WT and competitively excludes the later behind the invasion
front. If c+k(1− c) > p and p < [c+k(1− c)]/[R(1 − c)(1− k)], then the
reverse situation happens: the WT invades the disease-free equilibrium faster
than the RB genotype and competitively excludes the later behind the invasion
front.

In the remaining situation, that is

c+k(1− c) > p >
c+k(1− c)

R(1− c)(1− k)
,

the WT invades the disease-free equilibrium faster than the RB genotype (since
c+k(1− c) > p) but does not exclude the later behind the invasion front.
Therefore, the RB genotype invades the WT-only equilibrium at speed σ4 < σ1
(since σ4 < σ2 and σ2 < σ1 in this case). Behind this second and slower
invasion front, the WT and the RB genotype coexist steadily (Fig. 7). The
reverse situation, in which the RB genotype would precede the WT while
both are led to coexist, is not possible.
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Note that the spreading speed of the RB genotype invading the disease-free
equilibrium (σ2) does not depend on p, so if the WT is faster than RB in a
mixture, it is also faster than RB in a pure stand.

5.5 Numerical simulations

Numerical computations of system (1), presented in Figure 5 and Figure 7, are
performed using the fourth order Runge-Kutta method for the first derivative
with respect to time, combined with the second order finite difference scheme
for the second derivative with respect to space.

Figure 7 shows the long-term pattern obtained from numerical simulations
with parameters such that both pathogen genotypes (WT and RB) can coexist.

If the WT initially precedes the RB genotype, the WT spreads faster than
the RB genotype and generates a first invasion front. For these parameter
values, the RB genotype can still invade and coexist with the WT. This leads to
the emergence of a second invasion front, advancing more slowly than the first
front. Some authors refer to stacked fronts, e.g. [30], or propagating terraces,
e.g. [54]. Between the first and the second front, the prevalence of the disease
reaches a plateau. The prevalence of the disease is increased behind the second
front, and is eventually the same as in a resistant pure stand (or landscape),
see Fig. 4 and supplementary videos.

If the RB genotype initially precedes the WT, the WT makes up the de-
lay and overtakes the RB genotype. In the long-run, the WT invasion front
precedes the RB invasion front as in Fig. 7.

6 Discussion

Developing new or preexisting methods based on bio-diversification forms the
basics of agroecology [1]. Plant host diversification (cultivar mixtures or field
mosaics) are one of these. Several models explored the spreading speed of plant
diseases in host mixtures [6,65]. In particular, it was shown that the spread-
ing speed is an increasing concave function of the proportion of susceptible
hosts [6], which is consistent with the spreading speed we obtained for the
WT invading the disease-free equilibrium. However, previous studies did not
consider pathogen diversity, specifically the possibility that the WT co-occur
with a RB genotype. Since pathogen diversity and the competition between
pathogen genotypes for susceptible hosts is a key component of the success of
host mixtures [50,43,13], we explored a simple spatial model accounting for
pathogen diversity.

The model we explored consists of 2 PDE’s coupled to 3 ODE’s. We showed
that the model is cooperative, which led us to make a formal spreading speed
analysis around each possible equilibrium. This allowed us to get a rather
complete picture of the behaviour of the model. In particular, we were able
to derive the spreading speed of the RB genotype invading an area previously
invaded by the WT.
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A notable feature of our analysis is that in host mixtures, the disease may
spread along two fronts, with maximum prevalence behind the second front.
The first front is led by the WT invading the disease-free equilibrium (as in [6]),
and the second front (advancing at a lower speed) is led by the RB genotype
invading the WT. Both pathogen genotypes eventually coexist at the rear of
the front. The first front advances faster than the disease spreading speed in
a resistant pure stand (or landscape). This is because the resistance-breaking
cost exceeds the proportion of resistant hosts in this case. However, the preva-
lence just behind the first invasion front is lower than in a pure resistant stand
(or landscape). This is because the WT is unable to infect resistant hosts. The
second invasion front advances more slowly than the disease spreading speed
in a resistant pure stand (or landscape). This is because the spread of the RB
genotype is slowed down by the WT due to the competition for susceptible
hosts. Behind the second invasion front however, the prevalence is the same as
in a resistant pure stand (or landscape). Altogether, our results show that the
spatial spread of the disease in host mixtures (or field mosaics) may have a
twofold effect compared to its spread in a resistant pure stand (or landscape):
on one hand the WT invades the disease-free area faster than the RB would,
and on the other hand the spread of the RB genotype is slowed down due to
the competition with the WT.

Our study therefore showed that the question of whether host mixtures (or
field mosaics) are advantageous compared to resistant pure stands (or land-
scapes) is not straightforward, be it in terms of spreading speed or prevalence.
However, we did not consider other features of host mixtures that are known
to be key for their performance in the field, such as priming-induced cross-
protection [13]. Moreover, we ignored co-infections of susceptible plants (or
fields) by the WT and the RB genotype [74]. This model was a first step in
these directions, that are left for future research.

Acknowledgements FH acknowledges funding from the INRAE “Plant Health and the
Environment” Division. MAL gratefully acknowledges a Canada Research Chair and an
NSERC Discovery grant. The authors thank the reviewers for their helpful suggestions.

Conflict of interest

The authors declare that they have no conflict of interest.

Data Availability Statement

The datasets generated during and/or analysed during the current study are
available from the corresponding author on reasonable request.

References

1. Altieri, M.A.: Agroecology: the science of sustainable agriculture. CRC Press (2018)



20 Hamelin, F.M. et al.

2. Bahri, B., Kaltz, O., Leconte, M., de Vallavieille-Pope, C., Enjalbert, J.: Tracking costs
of virulence in natural populations of the wheat pathogen, Puccinia striiformis f. sp.
tritici. BMC Evolutionary Biology 9(1), 26 (2009)

3. Bampfylde, C., Lewis, M.: Biological control through intraguild predation: case studies
in pest control, invasive species and range expansion. Bulletin of Mathematical biology
69(3), 1031–1066 (2007)

4. Bargués-Ribera, M., Gokhale, C.S.: Eco-evolutionary agriculture: Host-pathogen dy-
namics in crop rotations. PLoS Computational Biology 16(1), e1007546 (2020)

5. Ben M’Barek, S., Karisto, P., Abdedayem, W., Laribi, M., Fakhfakh, M., Kouki, H.,
Mikaberidze, A., Yahyaoui, A.: Improved control of Septoria tritici blotch in durum
wheat using cultivar mixtures. Plant Pathology 69(9), 1655–1665 (2020)

6. van den Bosch, F., Verhaar, M., Buiel, A., Hoogkamer, W., Zadoks, J.: Focus expansion
in plant disease. IV: Expansion rates in mixtures of resistant and susceptible hosts.
Phytopathology 80(7), 598–602 (1990)

7. Bousset, L., Sprague, S.J., Thrall, P.H., Barrett, L.G.: Spatio-temporal connectivity
and host resistance influence evolutionary and epidemiological dynamics of the canola
pathogen Leptosphaeria maculans. Evolutionary applications 11(8), 1354–1370 (2018)

8. Brown, J.K.: Durable resistance of crops to disease: a Darwinian perspective. Annual
review of phytopathology 53, 513–539 (2015)

9. Bruns, E., Carson, M.L., May, G.: The jack of all trades is master of none: A pathogen’s
ability to infect a greater number of host genotypes comes at a cost of delayed repro-
duction. Evolution 68(9), 2453–2466 (2014)

10. Caffier, V., Didelot, F., Pumo, B., Causeur, D., Durel, C., Parisi, L.: Aggressiveness
of eight Venturia inaequalis isolates virulent or avirulent to the major resistance gene
Rvi6 on a non-Rvi6 apple cultivar. Plant pathology 59(6), 1072–1080 (2010)

11. Carson, M.: Aggressiveness and perennation of isolates of Cochliobolus heterostrophus
from North Carolina. Plant Disease 82(9), 1043–1047 (1998)

12. Castagnone-Sereno, P., Bongiovanni, M., Wajnberg, E.: Selection and parasite evolution:
a reproductive fitness cost associated with virulence in the parthenogenetic nematode
Meloidogyne incognita. Evolutionary Ecology 21(2), 259–270 (2007)

13. Clin, P., Grognard, F., Mailleret, L., Val, F., Andrivon, D., Hamelin, F.: Taking advan-
tage of pathogen diversity and immune priming to minimize disease prevalence in host
mixtures: a model. Phytopathology (ja) (2021)

14. Cruz, C.M.V., Bai, J., Oña, I., Leung, H., Nelson, R.J., Mew, T.W., Leach, J.E.: Pre-
dicting durability of a disease resistance gene based on an assessment of the fitness
loss and epidemiological consequences of avirulence gene mutation. Proceedings of the
National Academy of Sciences 97(25), 13500–13505 (2000)

15. Dixon, G.: Biology of Plasmodiophora brassicae wor. – A review of recent advances.
Acta horticulturae 706, 271–282 (2006)

16. Djidjou-Demasse, R., Moury, B., Fabre, F.: Mosaics often outperform pyramids: insights
from a model comparing strategies for the deployment of plant resistance genes against
viruses in agricultural landscapes. New Phytologist 216(1), 239–253 (2017)
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