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Abstract Seasonality, or periodic host absence, is a
central feature in plant epidemiology. In this respect,
seasonal plant epidemic models take into account
the way the parasite overwinters and generates new
infections. These are termed primary infections. In
the literature, one finds two classes of models: high-
dimensional elaborate models and low-dimensional
compact models, where primary infection dynamics
are explicit and implicit, respectively. Investigating a
compact model allowed previous authors to show the
existence of a competitive exclusion principle. How-
ever, the way compact models derive from elaborate
models has not been made explicit yet. This makes it
unclear whether results such as competitive exclusion
extend to elaborate models as well. Here, we show
that assuming primary infection dynamics are fast in
a standard elaborate model translates into a compact
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form. Yet, it is not that usually found in the literature.
Moreover, we numerically show that coexistence is
possible in this original compact form. Reversing the
question, we show that the usual compact form approx-
imates an alternate elaborate model, which differs from
the earlier one in that primary infection dynamics are
density dependent. We discuss to which extent these
results shed light on coexistence within soil- and air-
borne plant parasites, such as within the take-all disease
of wheat and the grapevine powdery mildew cryptic
species complexes, respectively.

Keywords Epidemiology - Semi-discrete model -
Slow-fast dynamics - Model reduction - Chaos -
Coexistence

Introduction

Coexistence of closely related plant parasite species
(or genetically distinct subgroups within a species)
is ubiquitous (e.g., Fitt et al. 2006; Lebreton et al.
2007; Fournier and Giraud 2008; Montarry et al. 2008,
2009; Mougou et al. 2008; Mougou Hamdane et al.
2010; Daval et al. 2010). This apparently challenges
the competitive exclusion principle, which states that
“two species occupying the same ecological niche can-
not coexist indefinitely” (Gause 1934; Chesson 2000).
Ecological differences that lead to niche partitioning
can occur in three basic ways: resource partitioning,
temporal partitioning, and spatial partitioning (Wilson
and Lindow 1994; Chesson 2000; Amarasekare 2003).
Neither resource nor spatial partitioning seems to be
involved in the coexistence of, e.g., the grapevine pow-
dery mildew and the take-all disease of wheat cryptic
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species complexes. Therefore, we wonder whether tem-
poral niche partitioning would be a plausible explana-
tion to coexistence in these species.

Under temperate climate, many plant parasites face
seasonality, i.e., periodic absence of their host plant.
This is brought about by winter environmental con-
ditions which are unfavorable to the plants, so that,
during this time period, many lose their vegetation
(natural ecosystems) or are simply not cultivated (agri-
cultural ecosystems). The periodical absence of the
main primary producer species has consequences for
the community supported by this producer. Compared
to tropical zones, in which there is no such an abrupt
seasonality, periodic host absence can induce major
qualitative changes in plant parasite population dy-
namics, such as chaos (Shaw 1994). During the period
of host absence, plant parasites overwinter through
survival forms that can be particularly cold-resistant,
e.g., cleistothecia for ascomycetes and oospores for
oomycetes (Agrios 2005). These survival forms repre-
sent a source of primary inoculum since they will gen-
erate the first or primary infections the year after (see
below as well). Only then can host-to-host or secondary
infections occur. These secondary infections will in turn
refill to some extent the primary inoculum reservoir, so
as to face winter again (see Fig. 1; Table 1). Whether
seasonality can promote temporal niche partitioning of
plant parasite species remains an issue (Kiss et al. 2011).

There exists quite a diversity of plant epidemic mod-
els taking into account seasonal host absence and how
parasites overwinter and generate primary and sec-
ondary infections (Gubbins and Gilligan 1997; Madden
and van den Bosch 2007; Mailleret and Lemesle 2009,

Fig. 1 Schematic representation of the different epidemic
processes in seasonal plant epidemic models with primary
and secondary infection. Dashed lines figure primary infection-
related processes, plain lines secondary infection ones, and dotted
lines phenomena occurring between growing seasons. See Table 1
for notations
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Table 1 Notations
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Meaning

Primary inoculum density

Susceptible host plant density

Infected host plant density

Growing season length (host plant is present)

Winter season length (host plant is absent)

Year length

Secondary infection rate

Primary infection rate

Infected host plants removal rate

Conversion rate from / to P (at the end of the season)
Winter season mortality rate of primary inoculum
Primary inoculum density independent depletion rate
Primary inoculum density dependent depletion rate
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and references therein). A major distinguishing feature
between these models concerns the way the primary
inoculum pool is depleted. Once the parasite’s overwin-
tering form generates propagules that may come into
contact with a susceptible host (e.g., spores, mycelium),
it no longer belongs to the primary inoculum pool.
However, depending on the biology of the parasite,
such a depletion may occur as a response to host pres-
ence (Webb et al. 1999), or regardless as to whether sus-
ceptible hosts are actually present (Bailey and Gilligan
1999). For instance, many foliar parasites, such as the
grapevine powdery mildew, have a primary inoculum
form (cleistothecium) that releases airborne ascospores
depending on the weather (rainfall and temperature),
disregarding host presence, to possibly infect remote
hosts (Gadoury and Pearson 1990; Gee et al. 2000).
Another example is the potato late blight parasite:
In Phytophthora infestans, oospore germination and
the subsequent release of zoospores mostly depend
on light and temperature (Harrisson 1992; Stromberg
et al. 2001). Once released, the spores either come
into contact with a host plant, or are lost. By contrast,
many root parasites have a primary inoculum form
that generates soilborne propagules upon reception of
a chemical signal from the host. For instance, in the cyst
nematodes, which overwinter in soil into the cyst form,
populations hatch only when the host plant is present,
through the action of root exudates (Fenwick 1949;
Williams and Beane 1979; Rawsthorne and Brodie
1986). Another example is the oomycete Aphanomyces
euteiches; Shang et al. (2000) showed indeed that root
exudates of various plant species influence A. euteiches
oospores germination. Accordingly, we will refer to the
soilborne and airborne parasites models, to indicate
that the primary inoculum depletion depends on the
susceptible host density, or not, respectively.
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Such complex biological life cycles may lead to quite
elaborate mathematical formulations (Truscott et al.
1997, 2000; Madden and van den Bosch 2002). Yet,
more compact and mathematically tractable forms of
seasonal plant epidemic models have recently been
proposed (Madden and van den Bosch 2007; van den
Berg et al. 2011). The essential difference between the
elaborate and compact models lies in the explicit ver-
sus implicit nature of the primary infection modeling.
Regarding coexistence of plant parasites in seasonal
environments, van den Berg et al. (2011) showed that,
in a class of compact models, a competitive exclusion
principle holds. However, it is not clear whether this
result holds for more elaborate models as well, e.g.,
Madden and van den Bosch (2002); it may still be that
coexistence is possible in such models. To fill this gap in
our understanding of plant parasite species coexistence,
we will investigate and compare airborne and soilborne
parasites ecological dynamics, through reducing each
elaborate model to a mathematically more tractable
compact form. Competitive exclusion and coexistence
will then be numerically explored.

Airborne model

In this section, we consider airborne primary infec-
tion dynamics. That is, we assume that primary inocu-
lum depletion early in the season occurs regardless as
to whether host plants are actually present (see the
“Introduction”). Hence, the per day primary inoculum
loss rate A will be a constant.

We build on Madden and van den Bosch (2002)’s
elaborate model, which explicitly considers both pri-
mary and secondary infection dynamics under environ-
mental seasonality. This results in a three-dimensional
semi-discrete model (Mailleret and Lemesle 2009); two
sets of ordinary differential equations, coupled to two
sets of recurrence equations, define the model. Assum-
ing primary infections occur on a faster time scale than
secondary infections, a slow—fast argument will show
that the three-dimensional model is approximated by a
two-dimensional semi-discrete model that is mathemat-
ically more tractable. We will further analyze the latter
compact model.

Model equations

By “environmental seasonality,” we refer to the suc-
cession of two time periods: the growing season, during
which the host plant is present, and the winter season,
say, during which the host plant is absent.

We let 7 be the length of the growing season and
T denote the year length. Thus, (7 — 1) is the winter
season length. Also, let (P, S, I) denote the primary in-
oculum, susceptible host plant, and infected host plant
densities, respectively.

Let us start by considering the growing season. As
usual, 8 and « denote the secondary infection and the
infected host plants removal rates, respectively. Also,
we let ® denote the primary infection rate and A be the
within-season primary inoculum loss rate. Thus, we let
the k-th year’s dynamics be governed by the following
equation: Fort € (kT, kT + 1),

P=—AP,
$=—-OPS—BSI,
I =+OPS+BSI—al, 1)

where the dot indicates derivative with respect to time
t. The £@ PS terms indicate that only a fraction of the
released primary inoculum actually encounter healthy
hosts and initiate primary infection, the remaining part
being lost (Bailey and Gilligan 1999).

At the end of the growing season (t = kT + t), host
plants are removed: e.g., crop plants are harvested, or
leaves of deciduous trees fall down to the ground. At
that time, infected host plants debris are assumed to
convert into primary inoculum at a rate 7 (the parasite
switches to a survival form). This translates into the
following recurrence equation:

PkT +17) = P(kT + 1) +nI(kT + 1),
S(kT +17) =0,
IkT+1%) =0, )

where the + superscript indicates the instant right after
the end of the growing season.

During the winter season, host plants are absent and
the parasites survive as primary inoculum (P), having
a winter-specific mortality rate w. Thus, for t € (kT +
T, (k+1)T),

P=—pnP,
S=0,
I=o. (3)

At the beginning of a new season (t = (k+ 1)T),
new susceptible host plants are made available to the
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parasite (crop plants are sowed or tree leaves emerge).
Let their initial density be . This translates into

P((k + 1)T+) = P((k+ 1)T),
S(tk+ DT = So,
I(k+DT%) =0. 4)

The semi-discrete model composed of sub-models 1
to 4 thus depicts the course of an epidemic over one
cycle (1 year) through primary and secondary infection
dynamics, infected host plants conversion into primary
inoculum at the end of the season, and survival to
host absence until the next year. This provides initial
conditions for iterating a new cycle. It is Madden and
van den Bosch (2002)’s model.

Fast primary infections

As suggested by Madden and van den Bosch (2002),
let us assume primary infections occur on a faster time
scale than secondary infections. This will allow us to
approximate model 1-4 with a simpler form through
slow—fast reduction techniques commonly used in ecol-
ogy (Auger et al. 2008). Mathematically, this consists
into letting . = ¢A and 6 = ¢®, with 0 < ¢ K 1; i.e.,
primary infection rate parameters © and A are assumed
to take large values, compared to the secondary infec-
tion parameters 8 and «. Using this, one can rewrite
Eq. 1 as

eP = —AP,
eSS =—-0PS—¢eBSI, (5)
el =+0PS+eBSI —cal,

with initial conditions at the beginning of year (k + 1):

P((k+ 1T = P((k+DT),
S(k+ DT =S, (6)
I((k+1)TH) =0.

To take advantage of the assumption that primary
infections are fast, i.e., that ¢ is small compared to 1,
we now write Eq. 5 in an explicit slow—fast form. Let
' = t/e denote the fast time scale. After a little algebra,
one gets

d 0

d
@ (S+ 1) = —8051,

d
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which is a slow-fast form of system 5 (Auger et al.
2008).

The theory of slow—fast dynamical systems tells us
that, as long as ¢ is small, one can approximate the
dynamics of system 5 by considering it on its slow
manifold only, i.e., on the subset of the state space
which attracts trajectories of the slow fast form of the
system when ¢ is set to 0. This somehow corresponds to
assuming that primary infections occur instantaneously.

For model 5, the slow manifold is determined by the
attractor of Eq. 7, with ¢ = 0. It is thus characterized
by the fact that (log(S) — ¢ P) and (S + I) remain con-
stant, while P goes exponentially to 0. Considering year
(k + 1), the slow manifold of Eq. 5 is thus given by

P =0,
log(8) = log(So) — gP((k + 1T,

S+1=2S,. ®)

Using the fact that (P, S, I) belongs to the slow
invariant manifold (Eq. 8), we obtain the following
model:

S=—BSI,
I=BSI—al, ©)

with initial conditions

S((k + 1)T*) = Syexp (_ O Pkt 1)T+)) ,
I((k+1D)TT) =S, <1 —exp (—%P((k + 1)T+))> .
(10)

(we omit P and P since both are equal to 0).
Model reduction

From Eqgs. 2, 3, and 4, it is possible to further simplify
Eqgs. 9 and 10. It suffices to notice that Eqgs. 3 and 4
translate into:

P((k+1D)TH =e " TDPKkT + 1),

so that, using Eq. 2 and noticing that P(kT 4+ 1) =0
(since the system is considered on the slow manifold
(Eq. 8)), we have

P((k+ DT =7e " T 1(kT + 7).

Using this last property in Egs. 9 and 10, we end up
with the following compact semi-discrete model: For all
k and foranyt € (KT, kT + 1),

S=—BSI,

I =RBSI—al, (D)
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coupled to the difference equation

e (70

S((k+1D)TT)=Syexp (— IkT+71) ),

—u(T—1)
I((k+D)TTH) =S, (l—exp <—%I(kT—i—r))> )
(12)

One easily sees that the compact model (Egs. 11
and 12) is well-posed: that is, it cannot produce negative
trajectories. Also, the latter remain bounded: § and [/
always remain smaller or equal to Sy. It is an original
model (see “Linearized model” section to see how it
relates to previous compact models).

In the limit that ¢ tends to 0, both the elaborate
model (Egs. 1-4) and the compact form (Egs. 11
and 12) produce the same dynamics, while as & remains
small compared to 1, but not infinitely small, the com-
pact form (Eqgs. 11 and 12) provides a good approxima-
tion of the elaborate model (Egs. 1-4) dynamics.

Notice that, due to the fast primary infections as-
sumption and other features from the elaborate model,
the compact semi-discrete model is independent of P

Airborne model

So

Years

Fig. 2 Two epidemic dynamics for the take-all disease of wheat
over 5 years, from airborne (left) and soilborne (right) models.
Compact model (Egs. 11 and 12) simulations are represented in
gray lines, and full model (Eqgs. 1-4) simulations are represented
in black solid lines. In the bottom row, solid lines represent
infected host plant density /, while the dotted lines represent
primary inoculum density P. Winter seasons are illustrated with
light-shaded areas. Parameters were v = 184 days, T = 365 days
(van den Berg et al. 2011), Sy = 1 arbitrary host plant unit, 8 =
0.04875 per day per host plant (root fragment) unit (van den Berg
et al. (2011)’s BK/2, taking host density at the inflexion point)

(the primary inoculum). This reduces the dimension
of the model yet induces a time-gap during the winter
season regarding the visual output (for 7 € (kT + T,
(k+1)T), the compact model shows no solution;
Fig. 2.)

Linearized model

Assuming Ore 7=/} is small, Eq. 12 reads:

Qe (T-1)

S((k+DTH =8y — YR

I1(kT + 1),

e mT-1)

I((k+1DHTH = TS

I(kT + 7). (13)
The linearity in the discrete part makes model 11-13
essentially equivalent to Madden and van den Bosch
(2007) and van den Berg et al. (2011). This shows a limit
to van den Berg et al. (2011)’s result concerning the ex-
istence of a competitive exclusion principle in airborne
parasites which is strongly dependent on the linearity
of the discrete part. It is actually unclear how small
Ome *T= /) has to be (i.e., how inefficient primary

Soilborne model

AN

0 . . . !
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) o
3 . y . | 3
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s \\ "‘\_\- .
o oy =
0 g 4 0
0 1 2 3 4

Years

a = 0.024 per day (van den Berg et al. 2011), = = | arbitrary
primary inoculum unit per host plant unit (each infectious root
fragment is a potential primary inoculum unit), u = 0.0072 per
day (van den Berg et al. 2011), A = 0.052 per day (Bailey and
Gilligan (1999)’s r4), ® = 0.04875 per primary inoculum unit per
day (similar to 8, primary inoculum units being also root frag-
ments) and § = A/Sy per day per host unit. Initial conditions were
S(0) = Sp, 1(0) =0, P(0) = 0.01 (elaborate model), or computed
from Eq. 10 with P((k + 1)T") = P(0) from the elaborate model
(compact model)
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inoculum has to be), for the approximation 13 to remain
valid and thus for the competitive exclusion principle to
hold.

A derivation

We define the parasite’s basic reproduction number %
as the quantity of primary inoculum at the beginning
of year (k + 1) produced via the infections generated
by one primary inoculum unit at the beginning of year
k,1in a disease-free context (Diekmann and Hesterbeek
2000; Madden and van den Bosch 2002, 2007; van den
Bosch et al. 2008). Mathematically speaking, %, will
thus be computed as P((k + 1)T")/P(kT™) estimated
from the linearized dynamics around the disease-free
solution. Since winters are implicit in the compact form
(Egs. 11 and 12), the disease-free solution is actually an
equilibrium and not a stationary cycle, yet it should be
kept in mind that plant populations do cycle (they are
absent during winters) even though it is not apparent in
the aggregated model equations.

We now state the following result regarding the
stability of the disease-free equilibrium in the compact
model. The proof is in “Appendix 1”.

Theorem 1 The compact model (Eqs. 11 and 12) admits
a stationary disease-free solution (S, I) = (So, 0) which
is globally asymptotically stable (GAS) if and only if the
parasite’s basic reproduction number

Ore—mT-1)

eBS-0rg
A

Ry =
is smaller or equal to 1.

Numerical computations

To investigate the dynamical behavior of the airborne
model, we performed some numerical simulations of
the elaborate and compact forms when %, > 1. We
most of the time identified a, seemingly GAS, periodic
stationary solution of period 1 year, i.e., characterized
by the exact replication of the epidemic from one sea-
son to the other. Figure 2’s left panel shows such dy-
namics in which, after a transient, the epidemic reaches
a periodic behavior.

Elaborate and compact models comparison
To illustrate the model reduction’s relevance, Fig. 2’s

left panel shows both the compact and elaborate model
dynamics. The parameter set was chosen to fit the take-
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all disease of wheat (caused by the soilborne fungus
Gaeumannomyces graminis var. tritici), for which real-
istic parameter values exist in the literature (Bailey and
Gilligan 1999; van den Berg et al. 2011). This will allow
us to compare airborne and soilborne mathematical
models, given a parameter set.

Regarding the airborne model, even though ® and A
are not that small compared to g and « (i.e., primary in-
fections are not that fast), the compact model provides
a good approximation of the elaborate model dynamics.

The route to chaos

It is well-known that complicated dynamics (such as
chaos) may easily arise in semi-discrete models and
that seasonal plant epidemic models may produce such
patterns as well (Mailleret and Lemesle 2009; Shaw
1994). We thus performed bifurcation analyzes to in-
vestigate whether or not the airborne model can ex-
hibit such dynamics. We were actually not able to find
any bifurcation starting from the parameters used in
the simulations presented on Fig. 2. Yet, with other
parameter values, 2-year periodic epidemic dynamics
were observed (Fig. 3). Such dynamics results from the
succession from 1 year to the next of under- and over-
exploitation phases of healthy hosts by the parasite.
Indeed, at the beginning of the first year of a 27 period
cycle (Fig. 3), there are very few parasites; they exploit
the healthy hosts very efficiently through primary and
secondary infection, yielding an important amount of
primary inoculum at the end of the growing season.
This high primary inoculum density results in a quite
large number of infected hosts after the second year’s
primary infection phase. Then, the number of healthy
hosts rapidly fall below the threshold %, and new-
infected hosts cannot compensate for disease-induced
host mortality. Consequently, very few infected hosts
survive until the end of the season, which results in a
very small parasite density at the beginning of the next
season, and the cycle is over.

To go deeper into the analysis, we focused on the
compact model. Keeping the same parameters as in
Fig. 3, we varied = from 0 to 7 primary inoculum
unit per host plant unit. This unveiled a transition
from periodic solutions of period 1 year to chaotic
regimes through a cascade of period doubling bifurca-
tions (see Fig. 4), which is a very classical route to chaos
(Guckenheimer and Holmes 2002). We must note,
however, that the parameter values at which the bifur-
cations appeared correspond to quite large %, values:
on Fig. 4, %, ranges from 0 (7 =0) to almost 10°
(m = 7). This implies that such complicated dynamical
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Fig. 3 Example of a 2-year period stationary solution of the
airborne model. Graphic code is similar to the one described
in Fig. 2. Parameters were t = 120 days, 7" = 365 days, Sp =1
arbitrary host plant unit, § = 0.43 per day per host plant unit,
a = 0.3698 per day, u = 0.005 per day, A = 0.2938 per day, 6 =
0.1 per primary inoculum unit per day = = 1.7, and ¢ = .1, for
the elaborate model simulation

So

Fig. 4 Bifurcation diagram for the compact form of the airborne
model (Egs. 11 and 12). Each dot of the figure represents an
asymptotic of S at the end of the growing season, computed
from the 50 last years of a 600-year simulation (to remove the
transients), against parameter 7. Parameters were as in Fig. 3
except that 7 was varied from O to 7 primary inoculum unit per
host plant unit. The bifurcation associated with the emergence of
a positive globally stable T-periodic solution (% just above 1)
happens for very low values of = (~0.007) so that it is not visible
on the picture. The transition from this globally stable periodic
solution to chaos occurs through a cascade of period doubling
bifurcations

patterns may be difficult to encounter in nature, since
such high reproductive abilities are arguably hardly met
by any plant parasite.

Since it may have happened that the bifurcations we
observed were artifacts induced by the slow—fast model
reduction, we computed the same bifurcation diagram
for the elaborate airborne model with ¢ =0.1. We
actually observed a pattern mostly similar to the one
shown on Fig. 4, except that the different bifurcations
occurred for slightly larger values of r. This is because
the reduction of the primary infection phase tends to
make the pathogen a little more efficient during pri-
mary infection (see S dynamics on Fig. 2’s left panel,
where the compact approximation always slightly un-
derestimates healthy hosts density in the elaborate
model). Thus, the compact model is more prone to
over-exploitation phenomena, which are responsible
for period doubling bifurcations.

Coexistence issue

To show that two strains can coexist, we assumed
one strain performs better than the other within
the growing season and the other way around dur-
ing the winter season; this is supported by empir-
ical evidence in several ecological models (Carson
1998; Abang et al. 2006). Mathematically, this trans-
lated into considering two sets of variables [;, P;
(i =1,2), representing the two parasite strains, with
dynamics following the same functional form as in
model 1-4. All parameters were assumed equal for the
two strains except w; and S; to reflect their different be-
tween and within season performances. The only other
change is that S=— > /(®SP; — BiSI) in Eq. 1 to take
into account that susceptible hosts may be infected by
strain 1 or by strain 2. Figure 5’s left panel numerically
shows that coexistence of two strains is theoretically
possible in the airborne model. Although simulations
were realized for an ad hoc parameter set, the fact that
the basic reproduction number takes different values
for strain 1 and for strain 2 suggests this is not a
degenerate case.

Moreover, Fig. 6 shows another instance of coex-
istence; the epidemic dynamics are typical of those
observed regarding the grapevine powdery mildew,
Erysiphe necator, for which two genetically distinct
parasite strains coexist. Montarry et al. (2008, 2009)
showed that niche partitioning, allowing the coexis-
tence of two genetically differentiated groups of E.
necator isolates (A and B) on the same host (i.e., the
same resource, Vitis vinifera), results from a separation
in time (and not in space). The groups temporal dynam-
ics showed that group A isolates were active only at
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Airborne model
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207 790 100

Fig. 5 Two epidemic dynamics of two parasite strains in com-
petition (/; and I) simulated from both the elaborate airborne
model (left column) and the elaborate soilborne model (right
column). The bottom row zooms on the last 3 years. Infected
plant densities /; and I, are represented by black and gray solid
lines, respectively. In the bottom row, the dotted lines represent
primary inoculum densities P; and P,; winter seasons are illus-
trated with light-shaded areas. Parameters were T = 200 days,

the beginning of the growing season and disappeared
during the course of the epidemic, whereas group B
isolates were responsible for late infections.

Airborne model

So

tn
— T

|

0 0 10 20
So
So 3
- 4 \'-.,‘__ :
0
27 Years

Fig. 6 Epidemic dynamics of two parasite strains in competition
(1) and I,) simulated from both the elaborate airborne model.
The bottom row zooms on the last 3 years. Infected plant densities
I and I are represented by black and grey solid lines, resp. In the
bottom row, the dotted lines represent primary inoculum densities
Py and P,; winter seasons are illustrated with light-shaded areas.
Parameters were as in Fig. 5, except for A = 0.1 per day, 81 =
0.001 < B2 = 0.1 per day per host plant unit, and p; = 0.0004 <
na = 0.0158 per day
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Soilborne model
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7 =165 days, So =1 arbitrary host plant unit, & = 0.005 per
day, = = 1 arbitrary primary inoculum unit per host plant unit,
0 = 0.5, » = 0.1 per day (left), and & = A/Sp per day per host unit
(right); I, and I, were parameterized by 8; = 0.01 < B, = 0.035
and w1 = 0.0025 < uy = 0.0068, respectively. Initial conditions
were S(0) = So, I;(0) = 0, I,(0) = 0, P;(0) = 0.01, and P»(0) =
0.01

Soilborne model

In this section, we consider soilborne primary infection
dynamics. That is, we consider that primary inoculum
depletion occurs only in the presence of (or contact
with) susceptible host plants (see the “Introduction”).

Let E denote a healthy host density-dependent pri-
mary inoculum depletion rate. Taking into account
this feature rather than density-independent depletion,
Eq. 1 reads:

P=—EPS,
§S=—-0PS—BSI,

I=+OPS+BSI—al (14)
Equations 2-4 remain unchanged. The above equation
is Webb et al. (1999)’s model, although these authors
did not include it in a seasonal framework.

Model reduction

The soilborne model reduction under the assumption
that primary infections are fast, i.e., that £ and ©® are
large compared to the other parameters, is reported in
“Appendix 2.”

Proceeding as for the airborne model, we obtain the
following compact semi-discrete model, which approx-
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imates the soilborne model composed of Egs. 14, 2, 3,  coupled to the difference equations

and 4: for all k and for any ¢t € (kT, kT + 1), 9

. S(k+ 1T =Sy — —me "I IKT + 1),

P=o, §

0 — _ 0

§=-BSI, I(k+ DT = ~2e " T[T + 7). (18)
I=pBSI—al, (15) §

coupled to the difference equations

P((k+ 1D)T") = max (o, e M= [kT 4+ 1) — gs()) ,
0
S((k+ DHTT) = max (SO — gne”‘(T”)I(kT +1), 0) ,

I((k+ 1)T") = min (gne“(T’)I(kT + 1), S0> . (16)

Again, the compact form of the soilborne models 15
and 16 is well-posed: S, I, and (S + ) are constrained
to the set [0, So]. “When linearity stems from model
reduction” section shows how it relates to previous
models.

Notice that, in this model, all healthy host plants
may be infected during the fast primary infection phase.
Also, primary inoculum is not necessarily entirely de-
pleted after the fast primary infection phase. In bio-
logical words, there may be enough primary inoculum
at the beginning of year (k+ 1) to infect all healthy
host through primary infections (this can also be in-
terpreted in terms of high primary inoculum infection
ability &, or in terms of low healthy host density S).
Such a situation is linked to the density-dependent
primary inoculum decay rate: as P infect healthy hosts
S, the rate at which P are depleted also decreases,
which makes it possible to infect more healthy hosts
than in the airborne model. Primary inoculum is thus
more efficient in the soilborne model, due to density
dependence.

When linearity stems from model reduction

In the situation where all the primary inoculum is sys-
tematically depleted after the primary infection phase,
i.e., as long as primary inoculum cannot infect all
healthy host plants through primary infections (which
seems a biologically reasonable case), one gets, for
t e (kT, kT + ), the following form where the discrete
part is linear

S=—BSI,
[=BSI—al, 17)

This simplification of the discrete part of the model
may occur in many different cases, for instance when
Ho < 1 (see “Appendix 2”), when either Sy, u, or & is
large or when either 7 or 6 is small.

Interestingly, the linearity in the discrete part makes
models 17 and 18 essentially equivalent to Madden and
van den Bosch (2007) and van den Berg et al. (2011).
Thus, our analysis provides a “mechanistic underpin-
ning” of these models (Geritz and Kisdi 2004), based on
the explicit consideration of both seasonality (periodic
host absence) and primary infection dynamics.

%, derivation

As in the airborne model, we get the following result
linking the parasite’s basic reproduction number %,
and the stability of the disease-free equilibrium. The
proof is presented in “Appendix 3.”

Theorem 2 The compact model (Egs. 15 and 16) admits
a stationary disease-free solution (S, I) = (So, 0) which
is GAS if and only if the parasite’s basic reproduction
number

Ore—mMT-1)

3

is smaller or equal to 1.

Ry = eBS—a)T

Numerical computations
Comparing the airborne and soilborne models

Proceeding as in “Airborne model” section, we per-
formed some numerical simulations of the soilborne
model. To begin with, we show on Fig. 2’s right panel
epidemic dynamics converging toward a periodic sta-
tionary solution of period 1 year. To make things
comparable, we set all the parameters common to the
airborne and soilborne models to the same values than
in Fig. 2’s left panel. Moreover, we set & to the same
numerical value than A; since Sy = 1, this implies that
%, are the same on the left and right panel of Fig. 2.
The dynamics produced by the soilborne model are
almost identical to those of the airborne model. This
is due to the fact that, for this parameter set, S does not
vary that much during the primary infection phase (i.e.,
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£S ~ &8y = 1), making density dependence apparently
transparent.

Regarding chaos

We also proceeded to a bifurcation analysis for the
compact form of the soilborne model, once again
choosing the same parameter values than for the air-
borne model and letting £ being equal to the numer-
ical value of A for the airborne model (Fig. 4), which
resulted in comparing models with the same %,. We
obtained a bifurcation diagram very similar to the air-
borne model’s one (Fig. 4), except that the bifurcation
occurred for slightly lower values of the parameter .
This is caused by primary inoculum being more efficient
in the soilborne model, which renders the system more
prone to over-exploitation phenomena and thus to bi-
furcations (“The route to chaos” section). Again, as
for the airborne model, we observed the same bifur-
cation diagram for the elaborate form of the soilborne
model with ¢ = 0.1, except that bifurcations occurred
for slightly larger values of the parameter .

Coexistence issue

To investigate the two-strain dynamics, we proceeded
as for the airborne model, regarding the two-strain
model. Figure 5’s right panel numerically illustrates
the competitive exclusion principle van den Berg et al.
(2011) found regarding the compact form of the model,
by showing that it holds in the associated soilborne
elaborate model. However, one seces that this does
not hold anymore in the airborne model (Fig. 5’s left
panel), everything else being unchanged. Therefore,
although Fig. 2 indicates that there is little quantitative
difference in the take-all disease dynamics between air-
borne and soilborne models, the structural differences
arise when looking at the qualitative dynamics in a
broader ecological context. In other words, our study
shows that density dependence in the primary inoculum
depletion rate, which is typical of soilborne diseases,
may prevent species coexistence.

Discussion

Two three-dimensional semi-discrete models, named
“airborne” and “soilborne” models, were investigated.
Both models combine seasonality (periodic host ab-
sence) and explicit primary infection dynamics, as in
Madden and van den Bosch (2002). Airborne and
soilborne models differ in that the primary inocu-
lum depletion rate is density independent and depen-
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dent, respectively (Webb et al. 1999). Assuming pri-
mary infections are fast, reduction techniques (Auger
et al. 2008) allowed us to derive two two-dimensional
model approximations that are mathematically more
tractable.

A first issue was whether one recovers a simple semi-
discrete model whose continuous part is the standard
SIR model (Smith 2008) and whose discrete part is
linear, as in Madden and van den Bosch (2007) and
van den Berg et al. (2011). One ecological implication
comes from the fact that the latter authors showed a
competitive exclusion principle holds in such a model.
That is, the parasite strain having the largest epi-
demiological basic reproduction number Ry, defined
in “Appendix 4”, eventually wins the competition; the
other strains die out. Long run coexistence is thus
impossible in such a model.

In both airborne and soilborne models, applying the
aforementioned reduction technique led to a continu-
ous SIR part, yet to a generally nonlinear discrete part.
Regarding the airborne model, “Linearized model”
section showed that it can be linearized in the limit
of an infinitely small composite parameter. As for the
soilborne model, “When linearity stems from model
reduction” section showed that it simplifies to a linear
discrete part very similar to Madden and van den Bosch
(2007) and van den Berg et al. (2011) in a significant
part of the parameter space.

On the one hand, this indicates that long-run persis-
tence is unlikely in the soilborne model. Yet, there is
no lack of empirical counterexamples, e.g., for the take-
all disease of wheat (Lebreton et al. 2007; Daval et al.
2010). A simple explanation to that apparent paradox is
that G. graminis var. tritici, although being a soilborne
plant parasite, better fits the airborne model because it
releases propagules (free-living mycelium, which grows
in the soil) regardless of host (wheat roots) presence
(Bailey and Gilligan 1999). This allows us to stress that
the so named airborne and soilborne models do not
necessarily correspond to the biologically very diverse
airborne and soilborne plant parasites, respectively.

On the other hand, we numerically showed that long
run coexistence is possible in the airborne model. This
is supported by experimental evidence, such as within
the powdery mildew species complex (“Coexistence
issue” section). The theoretical investigation of the
evolution of plant parasites in seasonal environments is
currently receiving increased attention (van den Berg
et al. 2010, 2011). Yet these studies are based on epi-
demic models in which a competitive exclusion prin-
ciple holds, what tremendously restricts the possible
outcomes of natural selection. Future research should
thus address the evolutionary implications of systems
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allowing more complex behaviors, such as co-existence
of different parasite species, like, e.g., in the present
airborne model.
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Appendix 1: Proof of theorem 1

It is easy to see that (S, I) = (Sp,0) is a stationary
solution of Eq. 11, so that I(kT + t) = 0, which used
in Eq. 12, implies that at the beginning of year (k + 1),
S((k+1)TH) =S8y and I((k+1)T") =0. Therefore,
the disease-free solution (S, 1) = (So, 0) is an equilib-
rium of models 11 and 12.

Linearizing Eqgs. 11 and 12 around (S, 1) = (5o, 0),
yields

I(kT + 1) = ePSo=IT [(kT),

Ore—mT—1)
= WSt 7 (k- 1)T + 1),

so that, remembering that P(k+ 1)T+) =nme * T KKT +7)
and rearranging the terms, we get

_ P((k+1)T")  Ome ™D

B = _ BSo—)T g
0 PkT™) P 0

Consider Eq. 11. Since S is always upper-bounded by
So, we have, fort € (kT, kT + 1),

I<(BSoy—a)] = (kT +1) < P07 [(kTT),
so that, using Eq. 12, we have:

I((k+1DTH

Ore—mT-1)
<S (1 — exp (—%e(ﬂSU“)TI(kTJF))) .

The right-hand side of the previous equation is an
increasing, strictly concave, function of I(k7T") which
equals 0 for 7(kT*) = 0 with a slope equal to

—u(T—1
SOQJTe n( )e(ﬁ&)_o{)t _ %
A
around [I(kT*)=0. Classical results on one-

dimensional recurrence equations allows one to

conclude that if %, is smaller or equal to 1, the
sequence (I(kT))ken is decreasing and converges to 0
as k goes to infinity.

A similar argument can be used for the sequence
(So — S(kT™))gen, showing that, if %, <1, the se-
quence (S(kTT))ren is increasing and converges to Sy
as k goes to infinity. Thus, the disease-free solution
(S0, 0) is globally attractive provided %y < 1. On one
hand, the monotonicity of both sequences (I(kT1))ken
and (S(kT))ken also implies that (S, 0) is locally sta-
ble if %, < 1. On the other hand, the consideration
of models 11 and 12 linearized around (S, 0) easily
allows one to conclude that the disease-free solution is
unstable if Z; > 1. This concludes the proof that (S, 0)
is GAS if and only if %, < 1.

Appendix 2: Fast primary infections in the soilborne
model

Proceeding as for the airborne model, let £ = ¢E. Equa-
tion 14 reads, in an explicit slow—fast form:

d 0

d
— S+ =—¢cal,

dr
d 9 9
E(P)=—5P<<5—5P>+EP>. (19)

Thus, the slow manifold of system 19 is characterized
by the fact that (S — gP) and (S + /) remain constant.
During year (k + 1), according to Eq. 4, these con-
stants are equal to (SO — gP((k + 1)T+)) and Sy, re-

spectively. Taking this into account and letting ¢ tend to
0, we get that the fast dynamics of P are determined by:

%(P) =—P((So—0P(k+1DTT))+6P), (20)

which is a quadratic differential equation with two
equilibria

Py =0, and P, = P((k+ )T*) - gSo,

the latter being positive or negative depending on S,
&, 0, and P((k+ 1)T™"). Actually, the sign of P, also
determines which equilibrium is an attractor.
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If P, <0, P, = 0is an attractor of the fast Eq. 20 for
positive initial conditions, the slow manifold reduces to
the set

P =0,

S=So— §P<(k+ DTH.
0
1= 2P+ nT)

If P, >0, then P, = (P((k+ )T*) — £S,) is an at-
tractor of the fast Eq. 20 for positive initial conditions.
In that case, the slow manifold of Eq. 19 is the set

P= <P((k+ DTt — gSo> .
S =0,
I=3S,.

It is actually possible to summarize these two cases
using the max and min functions. One obtains that the
slow manifold of system 19 is the set

P = max (O, P((k+1DT") — %S()) ,
0
S = max (So — EP((k—i- nTH), 0) ,

[ = min (gP((k + 1T, S0> . (21)

In these notations, either P, S, and [ are all equal to the
first argument of the functions max or min, respectively,
or are all equal to the second.

Appendix 3: Proof of theorem 2

We compute the basic reproduction number in models
15 and 16 from the linearization of the model around
the disease-free equilibrium (Sy, 0); we easily obtain

_ P((k+DT*)  re#TD

By — _ BSo-are
0 PkT™) P

As in the airborne model, it is fairly easy to show that
(S0, 0) is a stationary solution of models 15 and 16.

Consider 7 in Eq. 15. Remembering that (S + I) is
restricted to [0, Sy], we have Vt € (kT, kT + 1),

. 1
=0 D1 -al = @S- (1- E 1

@ Springer

Exploiting order preserving flow properties of one-
dimensional ordinary differential equations and sepa-
ration of variables techniques, we get

(BSo — a)ePo=t [(kT)
(BSo — ) + (eS0T — DNI(KT*)
(22)

I(kT + 1) <

We shall now use the third equation in Eq. 16 to
compute I((k + 1)T™), but the nonlinear min function
requires some attention. One can easily show that
IkT + 1) < e~ S, Thus

gne_“(T_’)I(kT—i—r) < gne_“(r_”e(ﬂs"_“)’So = %S0,
so that if #,, < 1, we have

. 0 —u(T—1) o —u(T—1)
min Ene H 1(kT+1), S :Ene " I(kT+7).

Assume from now on %, < 1. Using Eq. 22 and the
previous remark, we get

I((k+DTH) < fre T (BS) — a)e BT [(kTY)
(k+1DTT) < (BSo — ) + peBSo—ar — )[(kT+)

As in “Appendix 1” the right-hand side of the previous
equation is an increasing, strictly concave, function of
I(kT*) which equals 0 for I(kT+) =0 with a slope
equal to

Ore—mT—1)

§

at I(kT*) = 0. Concluding that (Sg, 0) is globally at-
tractive for trajectories of models 15 and 16 if %, <1
i1s no harder than in the airborne case, nor is the local
(un)stability study.

eBSo—a)T _ 7

Appendix 4: Alternate %, definition and evolutionary
implications

Using a technique introduced by Bacaer and
Guernaoui (2006) to study periodic epidemic models,
the parasite’s basic reproductive number can be
derived alternately. Let us focus on the airborne
model. A similar derivation can be made regarding
the soilborne model, mutatis mutandis. Let us linearize
Egs. 11 and 12 around the disease-free equilibrium
(S, 0) at first order in s and i, with (S, I) = (Sy + s, 0).
Since for all t € (kT + t, (k+ 1)T) models 11 and 12
define no solution (the time-gap mentioned in the body
of the paper), we find convenient to make the following
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time change: Let z =¢— (k — 1)(T — 1), with k € N*.
We get, for the continuous part: Vz € [kz, (k+ 1)7),

% = (BSo — )i, (23)
Z

and for the discrete part: Vk € N¥,

—u(T—1)
itktt)y = Sy <1 —exp (—%i(kr)))

OremT-1)

=~ S, - i(kt), (24)

since i is assumed to be small. Proceeding as in van den
Berg et al. (2011), Egs. 23 and 24 also read:

di Ome—MT=1)
& <,BSO —a+log (”—So) 5(t — kf)> i,
dz A

(25)

where 4§ is Dirac’s delta function. Bacaer and
Guernaoui (2006) showed that for a system such as
Eq. 25, one obtains a basic reproduction number de-
noted Ry such as:

kY Ore—mMT-1)
Bt if 7€ So<1,
OreHT-1) A
at—log <f S())
kY Omre—mT-1)
Ro= B0 if ”e—so =1,
o A
Ome—mT-1)
BSot+log (f So> 0 e—i(T-0)
if So>1.
ot A
(26)

Notice that Z, > 1 & Ry > 1. The difference is a mat-
ter of definition. In the body of the paper, we showed
that %, is the basic reproduction number of a primary
inoculum unit. In other words, %, is an ecological
definition. Ry is rather an epidemiological definition: It
is the expected number of infections directly generated
by a single infected individual introduced at a random
time, in a disease-free context.

Interestingly, “Linearized model” section and van
den Berg et al. (2011) strongly suggest that in the limit
of infinitely small values of #re*7~? /), the strain
that has the greatest epidemiological Ry (rather than
the largest ecological %) is expected to eventually win
the competition. See, e.g., (Mylius and Diekmann 1995)
for related issues in a broader ecological context.
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